Search results for "Kinetic Energy Recovery System"
showing 4 items of 4 documents
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In Part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency and the power or energy limitations are adequately considered. In Part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB S…
A six legs buck-boost interleaved converter for KERS application
2020
This paper addresses the design of a bi-directional DC/DC power converter to interface a supercapacitor bank and a motor-generator unit. The design is based on an interleaved six legs topology in which the current is shared among six inductors to minimize their weight and cost, allowing, besides, a low switching frequency to lessen switching losses. The converter is conceived to be employed in an electric Kinetic Energy Recovery System for Internal Combustion Engine Vehicles. The system makes use of a supercapacitor as a storage system, and a motorgenerator unit connected to the drive shaft for vehicle acceleration and braking. The system uses available commercial devices, thus obtaining a …
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 1: System analysis and …
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented, and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency, and the power or energy limitations are adequately considered. In part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB…
A Feasibility Analysis of an Electric KERS for Internal Combustion Engine Vehicles
2019
In this work, the authors evaluate the energetic and economic advantages connected to the implementation of an electric Kinetic Energy Recovery System (e-KERS) on an internal combustion engine vehicle (ICEV). The e-KERS proposed is based on the use of a supercapacitor (SC) as energy storage element, a brushless motor generator unit (MGU) for the conversion of the vehicle kinetic energy into electric energy (and vice versa), and a power converter properly designed to manage the power transfer between SC and MGU. The low complexity of the system proposed, the moderate volume and weight of the components selected for its assembly, together with their immediate availability on the market, make …